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Poissonian Obstacles with Gaussian Walls
Discriminate Between Classical and Quantum
Lifshits Tailing in Magnetic Fields
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We investigate the leading low-energy falloff of the integrated density of states
of a charged quantum particle in the Euclidean plane subject to a perpendicular
constant magnetic field and repulsive impurities randomly distributed according
to Poisson's law. This so-called magnetic Lifshits tail was determined by
K. Broderix et al. [J. Stat. Phys. 80:1 (1995)] for algebraically decaying and
by L. Erdo� s [Probab. Theory Relat. Fields 112:321 (1998)] for compactly
supported single-impurity potentials. While the result in the first case coincides
with the corresponding classical one, the Lifshits tail in Erdo� s' case exhibits a
genuine quantum behavior. Building on both works, we determine magnetic
Lifshits tails for a wide class of positive impurity potentials with a leading long-
distance decay in between these limiting cases. Gaussian decay may be shown
to discriminate between classical and quantum behavior. The Lifshits tail caused
by Gaussian decay reveals power-law falloff with an exponent not yet completely
determined.

KEY WORDS: Random Schro� dinger operators; Lifshits tails; magnetic fields.

1. INTRODUCTION

For several decades one-particle Schro� dinger operators with random
potentials in d-dimensional Euclidean space Rd (d=1, 2, 3,...) have been
successfully used by physicists to model quantum aspects of disordered
electronic systems. The interest in low dimension (d=1, 2) has been
stimulated by the fabrication of semiconductor microstructures and
microdevices as well as by the discovery of the (integer) quantum Hall
effect. In this context, both theoretical physicists and��more recently��
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mathematicians have intensively analyzed random Schro� dinger operators
for the plane R2 and with a perpendicular constant magnetic field. These
operators act on the Hilbert space L2(R2) of Lebesgue square-integrable,
complex-valued functions on the plane and are informally given by dif-
ferential expressions of the form

H(V|) :=H(0)+V| (1.1)

where the unperturbed part H(0) is non-random and given by the usual
Landau Hamiltonian (in the symmetric gauge)

H(0) :==0 _\il
�

�x1

&
x2

2l+
2

+\il
�

�x2

+
x1

2l+
2

& (1.2)

Here i stands for the imaginary unit and (x1 , x2) for the pair of Cartesian
co-ordinates of a given point x # R2 interpreted as the classical position of
a particle with mass m>0 and electric charge Q{0. Furthermore,
2m=0 �|Q| �>0 is the strength of the magnetic field and l :=��- 2m=0 stands
for the so-called magnetic length where 2?�>0 denotes Planck's constant.

The explicit spectral resolution

H(0)= :
�

n=0

=n Pn (1.3)

of the unperturbed operator dates back to Fock(7) and Landau, (11) where
the eigenvalue =n :=(2n+1) =0 is called the n th Landau level and the
associated infinite-dimensional orthogonal eigenprojection Pn is an integral
operator given by the kernel

Pn(x, y) :=
1

2?l2 exp _i
x2 y1&x1 y2

2l2 &
|x& y|2

4l2 & Ln \ |x& y|2

2l2 + (1.4)

Here |x& y|2 :=(x1& y1)2+(x2& y2)2 denotes the square of the Euclidean
distance between the points x, y # R2 and ! [ Ln(!) :=(1�n !) e!(dn�d!n)
(!n e&!) is the n th Laguerre polynomial.

Throughout this paper the random potential V| perturbing H(0) in
(1.1) is chosen to be a repulsive Poissonian one. It acts as a multiplication
operator and can be defined informally as

V|(x) :=:
j

U(x&q|( j)), U�0 (1.5)

Here for a given realization | # 0 of the randomness the point q|( j) # R2

stands for the position of the j th impurity repelling the particle at x # R2
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by a positive potential U which neither depends on | nor on j. We assume
that U>0 on some open set in R2. The randomness is chosen such that the
probability of simultaneously finding M1 , M2 ,..., MK impurity points in
respective pairwise disjoint subsets 41 , 42 ,..., 4K/R2 is given by the
product >K

k=1 e&* |4k |(* |4k | )Mk�Mk ! , where |4k | is the area of 4k and the
parameter *>0 is the mean concentration of impurities. From the par-
ticle's classical point of view and in the terminology of ref. 17 the impurities
appear as soft Poissonian obstacles with shape function U. More or less
fast decay of U at infinity is ``felt'' as a more or less steep wall bordering
an individual obstacle.

The spectral properties of the perturbed Schro� dinger operator (1.1) are
still insufficiently understood. While it is known that its spectrum is with
probability one non-random and equal to the half-line [=0 , �[, many
details such as spectral localization, that is, the existence of a pure-point
component (away from the Landau levels) are still not settled. The simplest
but physically important spectral characteristics of the given Schro� dinger
operator is its integrated density of states N: E [ N(E ). Roughly speaking,
N(E ) is the averaged number of energy levels per area below a given
energy E # R. In particular, the set of growth points of N coincides with the
almost-sure spectrum [=0 , �[.

In this paper we study N near the bottom of the almost-sure spectrum,
that is, the behavior of N(=0+E ) for Ez0. Since the presence of the
obstacles rarefies low-lying energy levels, one expects that the values of N
near =0 are dramatically diminished. The resulting leading low-energy falloff
is commonly referred to as a Lifshits tail. In the first place, it depends on
the long-distance decay of U. In fact, the slower the decay of U, the faster
the falloff of N. In a wider sense, the notion Lifshits tail is also used for the
low-energy behavior of the integrated density of states in case of non-
positive impurity potentials.

For vanishing magnetic field the Lifshits tails have been identified for
various types of impurity potentials��first by I. M. Lifshits (1917�1982)
himself and, most recently, in ref. 9. We refer to this work, the monographs
refs. 4, 14 and refs. 8, 2 for long lists of references and part of the history
of the subject.

For non-vanishing magnetic field the Lifshits tails have been
rigorously determined, up to now, only for positive U with extremely slow
or extremely fast long-distance decay in refs. 2 and 6, respectively. More
precisely, in case of a definite algebraic (but integrable) long-distance
decay, that is

lim
|x| � �

|x|: U(x)=u (1.6)
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for some constants 0<u<� and :>2, the integrated density of states was
shown(2) to fall off to zero at =0 faster than any power of E in the sense that2

lim
Ez0

E 2�(:&2) ln N(=0+E )=&C(:, u, *) (1.7)

In this case, the leading asymptotics of N at the bottom =0 of the almost-
sure spectrum coincides with that of the corresponding classical integrated
density of states Nc at the infimum of its support, that is, at zero energy.
In this sense, we refer to (1.7) as an example of a classical Lifshits tail. An
indication of the classical behavior of (1.7) is provided by the fact that the
explicitly known C>0 depends only on the decay exponent :, the asymptotic
constant u and the mean concentration * of the impurities but not on the
magnetic field or Planck's constant, see (2.24) in ref. 2. Roughly speaking,
Nc(E ) is the average volume per area of that part in phase space R2_R2

on which the classical Hamiltonian

h|(x, p) :=
1

2m _\p1+
�

2l2 x2+
2

+\ p2&
�

2l2 x1+
2

&+V|(x) (1.8)

corresponding to (1.1) takes on values smaller than the given energy E.
Reference 6 is concerned with a more challenging quantum Lifshits

tail. In developing a version of the ``method of enlargement of obstacles''(17)

for obtaining the long-time asymptotics of Brownian motion among
Poissonian obstacles, Erdo� s(6) proved that for positive (and continuous) U
with compact support, in other words with finite range, one has power-law
falloff at =0 in the sense that

lim
Ez0

ln N(=0+E )
|ln E |

=&2?*l2 (1.9)

Remarkably, the exponent 2?*l2 is just the mean number of inpurities in
a disk of radius - 2 l.

Building on the result (1.9) and techniques of ref. 2, our goal in the
present paper is to derive the magnetic Lifshits tails for a wide class of
positive impurity potentials U with long-distance decay in between these
two extreme cases. It will turn out that all impurity potentials U which
decay faster than any Gaussian lead to the same quantum Lifshits tail
given by (1.9). On the other hand, we identify explicitly classical Lifshits
tails for all U with so-called stretched-Gaussian decay. More generally, the
techniques of ref. 2 and this paper show that the Lifshits tails coincide with
the corresponding classical ones in basically all cases in which U decays
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slower than any Gaussian. As a consequence, the decay of U that discriminates
between quantum and classical Lifshits tailing in magnetic fields is seen to
be Gaussian. This has already been conjectured by Erdo� s.(6) Although we
offer a conjecture on the value of the exponent for the power-law Lifshits
tail caused by Gaussian decay, its definite value remains open.

The present paper is organized as follows. The next section contains
precise definitions, assumptions, the main theorems and related results. The
proofs are given in Section 3. For completeness, the Appendix presents a
Tauberian theorem needed in Section 3.

2. MAIN RESULTS

2.1. Assumptions and Definitions

We will consider throughout positive impurity potentials U: R2 �
[0, �[, which are locally square integrable,

U�0, U # L2
loc(R2) (2.1)

and strictly positive on a non-empty open set, that is

U(x)� g03(r&|x&a| ) := g0 {1
0

if |x&a|<r
if |x&a|�r

(2.2)

for some g0 , r>0 and a # R2. Moreover U is assumed to possess one of the
following three decay properties at infinity:

Stretched-Gaussian decay. There exists 0<*<� and 0<:<2 such
that

lim
|x| � �

ln U(x)
|x| : =&

1
*: (2.3)

Super-Gaussian decay.

lim
|x| � �

ln U(x)
|x| 2 =&� (2.4)

Gaussian decay. There exists 0<*<� such that

lim
|x| � �

ln U(x)
|x| 2 =&

1
*2 (2.5)
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Remark 2.1. (i) The class of functions with super-Gaussian decay
defined by (2.4) consists of all functions which decay faster at infinity than
any Gaussian, that is, than a Gaussian with an arbitrary decay length.
In particular, with the convention ln 0 :=&�, the set of compactly sup-
ported functions is included. In contrast, while all functions in the class
with stretched-Gaussian decay (2.3) fall off to zero slower than any
Gaussian, this class covers only functions which are of the form U(x)=
g exp[&(|x|�*): (1+o(1))] for |x| � �, where g>0, :<2 and ``little oh''
o(1) stands for any function decaying to zero. Of course, for :=1
stretched-Gaussian decay covers exponential decay which is of physical
relevance in the context of screening of charged impurities.

(ii) The class of functions with Gaussian or super-Gaussian decay is
naturally complemented by the class of functions U with sub-Gaussian
decay, that is

lim
|x| � �

|x|2

ln U(x)
=&� (2.6)

It consists of all functions which decay slower than any Gaussian. For
instance, the functions with algebraic decay (1.6) or stretched-Gaussian
decay (2.3) are contained in this class. An example of a function with sub-
Gaussian decay which has neither algebraic nor stretched-Gaussian decay
is U(x)= g exp[&(|x|�*) ln( |x|�+)], g, *, +>0.

(iii) Gaussian (2.5), stretched-Gaussian (2.3) and, more generally,
sub-Gaussian decay (2.6) imply strict positivity of U on some open set as
is required in (2.2).

(iv) Either of the decay properties (2.3)�(2.5) together with (2.1)
guarantees that U is both integrable and square integrable

U # L1(R2) & L2(R2) (2.7)

In combination with U�0 this implies that the Poissonian potential (1.5)
can be rigorously defined as a positive, measurable, ergodic random field
on R2 with an underlying complete probability space (0, A, P). Moreover,
the Laplace characteristic functional

E _exp \&|
R2

J(d2x) V|(x)+&
=exp {&* |

R2
d2x _1&exp \&|

R 2
J(d2y) U(x& y)+&= (2.8)
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exists for all finite positive Borel measures J on R2; confer ref. 14, Eq. (1.40)
and Proposition 1.16. Here E( } ) :=�0 dP(|)( } ) denotes the expectation
with respect to the probability measure P.

(v) By employing the L p(R2)-norm of the impurity potential

&U&p :=\|R2
d2x |U(x)| p+

1�p

, p # [1, 2], (2.9)

the expectation value

E _|4
d2x (V|(x))2&=* |4| (&U&2

2+* &U&2
1) (2.10)

is seen to be finite for any compact set 4/R2 of Lebesgue measure
|4| :=�4 d2x, which implies that V| # L2

loc(R
2) for P-almost all | # 0. With

the help of Theorem 1.15 in ref. 5 one thus shows that the Schro� dinger
operator H(V|) is for P-almost all | # 0 essentially self-adjoint on C �

0 (R2)
/L2(R2), the dense subspace of complex-valued, compactly supported,
arbitrarily often differentiable functions on R2. Moreover, H(V|) is ergodic
and Proposition V.3.1 of ref. 4 ensures that | [ H(V|) is measurable.

The object of interest in this paper, the integrated density of states N,
may be defined by the expectation value

N(E ) :=E[3(E&H(V|))(x, x)], E # R (2.11)

where R2_R2
% (x, y) [ 3(E&H(V|))(x, y) # C, denotes the complex-

valued continuous integral kernel of the spectral projection 3(E&H(V|)).
In fact, N is the distribution function of a positive Borel measure on the
real line R with topological support equal to [=0 , �[, the spectrum of
H(V|) for P-almost all |.

Remark 2.2. (i) Theorem 6.1 and Remark 6.2(ii) of ref. 3 show
that spectral projections of H(V|) indeed possess continuous integral ker-
nels for P-almost all |, see also Lemma 3.1 in ref. 18. Due to (magnetic)
translation invariance the right-hand side of (2.11) is independent of the
chosen x # R2 such that

N(E )=
1

|4|
E _|4

d2x 3(E&H(V|))(x, x)& (2.12)

for any bounded open square 4/R2.
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(ii) Definition (2.11) of the integrated density of states coincides
with the more physical one by means of a spatial average in the macro-
scopic limit. More precisely, by the ergodicity of V| one has the identity

N(E )= lim
4ZR 2

1
|4| |4

d2x 3(E&H4(V|))(x, x) (2.13)

for P-almost all | # 0 and for all continuity points E of N. Here the finite-
area operator H4(V|) is the restriction of the Schro� dinger operator (1.1)
to a bounded open square 4/R2 with zero Dirichlet boundary conditions.
It can be rigorously defined on L2(4) as a sum of quadratic forms. Its
spectrum is purely discrete P-almost surely such that the pre-limit expres-
sion in (2.13), which is equal to |4|&1 times the number of eigenvalues of
H4(V|) smaller than E, is finite. The fact that the right-hand side of (2.13)
is non-random P-almost surely goes often under the name self-averaging.
For details see Theorem 2.2 in ref. 12a, Proposition 3.2 in ref. 18,
Remark 2.2(ii) in ref. 2, ref. 6 and references therein.

(iii) Replacing in (2.12) the quantum Hamiltonian (1.1) by its classi-
cal counterpart (1.8) and the trace over Hilbert space by an integration
over phase space, we define the (quasi-)classical integrated density of states
by

Nc(E ) :=
1

|4|
E _|4_R2

d2x d2p
(2?�)2 3(E&h|(x, p))& (2.14)

In accordance with a theorem(13) of N. Bohr and J. H. van Leeuwen on the
non-existence of diamagnetism in classical physics, the integration with
respect to the canonical momentum p # R2 shows that Nc(E ) does not
depend on the magnetic-field strength 2m=0 �|Q| �=��|Q| l2. Translation
invariance then simply gives

Nc(E )=
m

2?�2 E[(E&V|(0)) 3(E&V|(0))] (2.15)

independent of the chosen 4/R2.

2.2. The Magnetic Lifshits Tails

Having stated the assumptions and the main definitions we are
prepared to formulate the following three theorems which contain our
main results, namely the magnetic Lifshits tails for stretched-Gaussian,
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super-Gaussian and Gaussian decay of the impurity potential. Unfor-
tunately, for Gaussian decay our result is not quite complete.

Theorem 2.3. For a positive impurity potential with stretched-
Gaussian decay (2.3) satisfying (2.1) the leading low-energy asymptotics of
the integrated density of states reads

lim
Ez0

ln N(=0+E )
|ln E |2�: =&?**2 (2.16)

Theorem 2.4. For a positive impurity potential with super-
Gaussian decay (2.4) satisfying (2.1) and (2.2) the leading low-energy
asymptotics of the integrated density of states reads

lim
Ez0

ln N(=0+E )
|ln E |

=&2?*l2 (2.17)

Theorem 2.5. For a positive impurity potential with Gaussian
decay (2.5) satisfying (2.1) the leading low-energy asymptotics of the
integrated density of states is bounded according to the inequalities

&?*(*2+2l2)�lim inf
Ez0

ln N(=0+E )
|ln E |

�lim sup
Ez0

ln N(=0+E )
|ln E |

�&?* max[*2, 2l2] (2.18)

Remark 2.6. (i) For stretched-Gaussian decay of the impurity
potential the Lifshits tail reveals a classical behavior, similarly to the case
with algebraic decay. More precisely, as is the case with (1.7), Eq. (2.16)
remains valid if one substitutes Nc(E ), given by (2.15), for N(=0+E ).
In particular, the right-hand side of (2.16) is independent of the magnetic
field although the latter must be non-zero. More generally, classical Lifshits
tailing may be shown to occur basically for all impurity potentials in
L1(R2) & L2(R2) with sub-Gaussian decay (2.6). The argument for this is as
follows. Inspecting the subsequent proof of Theorem 2.3 one sees that
classical Lifshits tailing occurs if the decay of U survives the convolution
with a Gaussian. But this is the case if U has a definite sub-Gaussian decay
without severe oscillations.3 One should notice that the details of a classical
Lifshits tail depend on the specific (sub-Gaussian) decay of U, confer, for
example, (1.7) and (2.16).

(ii) All impurity potentials with a super-Gaussian decay cause the
same Lifshits tail (2.17) with a genuine quantum behavior, namely that
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first found by Erdo� s(6) for compactly supported impurity potentials, confer
(1.9).

(iii) As a consequence of (i) and (ii), Gaussian decay turns out to be
the discriminating decay between classical and quantum Lifshits tailing in
magnetic fields. By comparison, we recall (see Corollary 9.14 and Theorem
10.2 in ref. 14) that for vanishing magnetic field the discriminating decay is
(for two spatial dimensions) inverse quartic, that is, algebraic with :=4,
confer (1.6).

(iv) It is a widespread belief in theoretical physics (see for example
ref. 12, Eq. (17.3) and ref. 14, Eq. (9.44a)) that the behavior of N at the
bottom ' of the almost-sure spectrum of H(V|) is universally given for
Ez0 by the formula

ln N('+E)=[ inf
t>0

[t('+E)+ sup
� # L2(R d )
(�, �) =1

ln E(e&t(�, H(V|) �))]](1+o(1))

(2.19)

where (., �) :=�R d ddx .*(x) �(x) denotes the standard inner product of
., � # L2(Rd ). The subsequent proof shows that the asymptotics presented
in Theorems 2.3 and 2.4 as well as the lower bound in Theorem 2.5 are
consistent with this formula. Therefore we conjecture that the lower bound
in (2.18) reflects the true asymptotics of N for Gaussian decay. Obviously,
it becomes purely classical only in the limit lz0.

(v) For all three types of decay considered in Theorems 2.3�2.5, the
integrated density of states N is continuous at the bottom of the spectrum.
Using Lemma V.2.1 and Lemma V.2.12 of ref. 4 (see also Section 4.3 in
ref. 8) one thus proves that the infinite degeneracy of the lowest Landau
level is completely lifted P-almost surely. In fact, =0 is not even an eigen-
value of H(V|) for P-almost all |. Note that this statement holds irrespec-
tively of how large the support of the impurity potential is if only it
contains a non-empty open set. Over against this, in case of Poissonian
point impurities U(x)=u$(x), u>0, and when H(V|) is restricted to the
eigenspace P0L

2(R2) of the lowest Landau level, it was shown in ref. 6
that P-almost surely =0 remains an infinitely degenerate eigenvalue provided
that 2?*l2<1. In this context, see also refs. 1, 5a, 15, and 16.

2.3. Note on the Restricted Integrated Density of States

Instead of N one often investigates the so-called restricted integrated
density of states

Rn(E ) :=E[(Pn3(E&PnH(V|) Pn) Pn)(x, x)] (2.20)
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of the Schro� dinger operator (1.1) restricted to the eigenspace PnL
2(R2) of

the n th Landau level, see for example refs. 1, 2, 6, 10, 15, 16 and references
therein. According to ref. 2 the restricted operator Pn H(V|) Pn==nPn+
PnV|Pn is self-adjoint for P-almost all | if U is locally bounded which is
a stronger condition than U # L2

loc(R
2), confer (2.1).

Concerning the leading low-energy asymptotics of Rn , we only have
the following results:

lim
Ez0

ln Rn(=n+E )
|ln E | 2�: =&?**2 (2.21)

for stretched-Gaussian,

&2?*l2�lim inf
Ez0

ln Rn(=n+E )
|ln E |

(2.22)

for super-Gaussian and

&?*(*2+2l2)�lim inf
Ez0

ln Rn(=n+E )
|ln E |

�lim sup
Ez0

ln Rn(=n+E )
|ln E |

�&?**2 (2.23)

for Gaussian decay of the impurity potential U.
We omit the proofs of (2.21)�(2.23), because they follow mostly the

strategy of the proofs of Theorems 2.3�2.5 given in the next section. In fact,
the proofs of (2.21)�(2.23) are based on the inequalities (3.7) and (3.8) of
ref. 2, which take the place of the subsequent inequalities (3.5) and (3.4),
respectively. The reason why we do not have stringent upper bounds for
super-Gaussian and Gaussian decay is that in the restricted case we are not
aware of a result taking the place of Corollary 3.3.

For similar reasons as in the unrestricted case, we conjecture that
the left-hand sides in (2.22) and (2.23) reflect the true asymptotics of Rn .
In particular, in case of (2.22) with n=0 this conjecture is supported by
arguments given implicitly in ref. 6.

Remark 2.7. In ref. 10 the restricted integrated density of states R0

for a Gaussian impurity potential U(x)=(u�?*2) exp(&|x|2�*2), u, *>0, is
approximately constructed from the first twelve moments of the probability
distribution function 2?l2R0 . Contrary to one of our conjectures, its
authors suggest that the leading low-energy falloff should be given by
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limEz0 |ln E |&1 ln R0(=0+E )=1&?*(*2+2l2) if 2?*l2�1. This sugges-
tion is consistent with (2.23) and reproduces (for 2?*l2�1) the known
result(1) for Poissonian point impurities in the limit *z0.

3. PROOFS

The proofs of Theorems 2.3�2.5 rely on upper and lower bounds on
the low-energy asymptotics of the integrated density of states, the basic
inequalities for which will be given first.

3.1. Basic Inequalities

For the proof of classical Lifshits tailing, as claimed (for example)
under the assumptions of Theorem 2.3, we follow the strategy of ref. 2.
Instead of N we investigate its shifted Laplace transform

N� (t) :=|
�

0
dN(=0+E ) e&tE, t>0 (3.1)

in the long-time limit t � � and use a Tauberian theorem which will be
proved in the Appendix.

As expected for classical behavior, a simple Golden�Thompson type of
upper bound on N� already reflects its leading long-time falloff. In this
context it is useful to note that

m
2?�2t

E[e&tV|(0)]=|
�

0
dNc(E ) e&tE, t>0 (3.2)

is the Laplace transform of the classical integrated density of states (2.15).
A lower bound on N� is provided by a Berezin�Lieb�Luttinger type of
inequality which is sharper than inequality (3.5) in ref. 2 if and only if
t>(2=0)&1. Its formulation and proof makes use of the two-parameter
family of complex-valued, normalized Gaussian functions

y [ ,x( y) :=- 2?l2 P0( y, x), x # R2, (,x , ,x) =1 (3.3)

which belong to the ground-state eigenspace P0L
2(R2) of the Landau

Hamiltonian H(0), confer (1.4). Both basic inequalities are summarized in
the following
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Theorem 3.1. The shifted Laplace transform N� is bounded point-
wise according to

N� (t)�
et=0

4?l2 sinh(t=0)
E[e&tV|(0)] (3.4)

1
2?l2 E[e&t(,0 , V|,0)]�N� (t) (3.5)

Proof. The Golden�Thompson type of inequality (3.4) was proved in
ref. 2. For the proof of (3.5) we start by adding a quadratic confining
potential thereby introducing the total potential

V|, D(x) :=V|(x)+D |x| 2 (3.6)

with some D>0. Then for t>0 the ``Boltzmann operator''
exp[&tH(V|, D)] is trace class for P-almost all | # 0, and one finds for its
trace

Tr e&tH(V|, D)= :
�

n=0

Tr Pn e&tH(V|, D) Pn�Tr P0 e&tH(V|, D) P0 (3.7)

by omitting several positive terms. Since P0 exp[&tH(V|, D)] P0 possesses
a continuous integral kernel given by (x, y) [ (,x , exp[&tH(V|, D)] ,y)�
2?l2, we may write

Tr P0 e&tH(V|, D) P0=
1

2?l2 |
R2

d2x (,x , e&tH(V|, D) ,x) (3.8)

With the help of the Jensen�Peierls inequality the integrand can be bounded
from below as follows

(,x , e&tH(V|, D) ,x)

�exp[&t(,x , H(V|, D) ,x)]

=e&t=0 exp[&t(,x , V| ,x)] exp[&tD(,x , |X |2 ,x)] (3.9)

because ,x # P0L
2(R2) belongs to the domain of H(V|, D) for P�

Lebesgue-almost all pairs (|, x) # 0_R2. Since X=(X1 , X2) stands for the
position operator, the expression

(,x , |X |2 ,x) =|x|2+2l2 (3.10)
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occurring in (3.9) is the quantum-mechanical mean-square distance of the
particle from the origin in the vector state ,x . Thanks to Fubini's theorem
and the translation invariance of the random potential V| we thus get the
following lower bound for the averaged ``partition function''

E[Tr e&tH(V|, D)]�
1

2?l2 e&t=0 |
R2

d2x e&tD( |x|2+2l2) E[e&t(,x , V|,x)]

=
1

2?l2

?
tD

e&t(=0+2Dl2) E[e&t(,0 , V| ,0)] (3.11)

The desired inequality (3.5) now follows with the help of the approxima-
tion formula

N� (t)= lim
Dz0

tD
?

et=0 E[Tr e&tH(V|, D)] (3.12)

in (A.2) of ref. 2. K

For the quantum Lifshits tail Theorem 2.4 is concerned with the lower
bound in (3.5) is still able to detect the leading low-energy asymptotics of
N via the Tauberian Theorem A.1 in the Appendix. A complementing,
much more involved upper bound is provided by the result of ref. 6. The
key to profit by this result is the well-known fact that lessening the poten-
tial can only increase the integrated density of states, confer Theorem 5.24
in ref. 14.

Theorem 3.2. The integrated density of states obeys the inequality

N(E )�E[3(E&H(V� |))(x, x)] (3.13)

for any Poissonian potential V� |(x) :=�j U� (x&q|( j)) with 0�U� �U.

Proof. Using the fact that, according to (2.13), N(E ) and
E[3(E&H(V� |))(x, x)] may be viewed as macroscopic limits the claimed
inequality is a consequence of the min-max principle. K

Corollary 3.3. Under Assumptions (2.1) and (2.2) the low-energy
asymptotics of the integrated density of states is bounded according to

lim sup
Ez0

ln N(=0+E )
|ln E |

�&2?*l2 (3.14)
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Proof. By smoothening the edge of the Heaviside unit-step function
3 in assumption (2.2), one can find some continuous function
U� : R2 � [0, �[ with

g0 3 \r
2

&|x&a|+�U� (x)� g03(r&|x&a| )�U(x) (3.15)

Theorem 3.2 now allows to make contact with the situation considered in
Theorem 1.1 of ref. 6 and use the known asymptotics, confer (1.9), of the
right-hand side of (3.13). K

Before we proceed with the proofs of Theorems 2.3�2.5, it will be help-
ful to consider the following preparatory results.

3.2. Preparatory Results

To evaluate the long-time falloffs of the upper and lower bounds in
(3.4) and (3.5), it is useful to know that one can compute the involved
expectation values explicitly. This is most easily done with the help of the
Laplace characteristic functional (2.8) by choosing a suitable J. The next
lemma deals with the asymptotic behavior of certain integrals arising from
the bounds in (3.4) and (3.5) after computing the Poissonian expectation
values.

Lemma 3.4. Let W denote a positive integrable function on R2

which decays at infinity like

lim
|x| � �

ln W(x)
|x|; =&

1
+; (3.16)

for some 0<+<� and 0<;<�. Then

lim
t � �

(ln t)&2�; |
R 2

d2x (1&e&tW(x))=?+2 (3.17)

Proof. Changing variables x=: +(ln t)1�; ! in the integral in (3.17),
one gets

(ln t)&2�; |
R2

d2x (1&e&tW(x))=+2 |
R 2

d2! (1&e&tW(+(ln t)1�; !)) (3.18)
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Assumption (3.16) assures that for every 0<=<1 there exists T=>1 such
that

&1&=�
ln W(+(ln t)1�; !)

(ln t) |!|; �&1+= (3.19)

for all t>T= , which implies

1&exp[&t1&(1+=) |!|;]

�1&exp[&tW(+(ln t)1�; !)]

�3(1&(1&=) |!|;)+t1&(1&=) |!|;3((1&=) |!|;&1) (3.20)

where we additionally used 1&e&c�c for the second inequality. The
bounds (3.20) show that the integrand on the right-hand side of (3.18) con-
verges pointwise inside and outside the unit disk

lim
t � �

(1&e&tW(+(ln t)1�; !))={1
0

if |!|<1
if |!|>1

(3.21)

The claimed result now follows from (3.18) in the limit t � � by inter-
changing limit and integration with the help of the dominated-convergence
theorem and (3.21). Here the integrable bound in (3.20) assures that this
theorem is indeed applicable. K

The previous Lemma 3.4 shows that the asymptotic behavior for large
t of the lower bound in (3.5) depends on the long-distance decay of the
convolution

( |,0 |2 V U )(x) :=|
R 2

d2y |,0(x& y)|2 U( y)

=
1

2?l2 |
R 2

d2y e&|x&y| 2�2l
2
U( y) (3.22)

In the next lemma we determine this decay for all three types of decay con-
sidered for U. Roughly speaking, the convolution is shown to decay like
that convolving factor which has the slower decay.

Lemma 3.5. Let j=1, 2 and Wj{0 be positive integrable functions
on R2 which decay at infinity like

lim
|x| � �

ln W j (x)
|x|; =&

1
+;

j

(3.23)
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with some constants ;, +j obeying either

(i) 0<;<�, 0<+1<� and 1�+2=�

or

(ii) ;=2 and 0<+j<�.

Then

lim
|x| � �

ln(W1 V W2)(x)
|x| ; =&

1
+; (3.24)

where + :=+1 in case (i), and + :=- +2
1++2

2 in case (ii).

Proof of Case (i) of Lemma 3.5. Our assumptions imply that for
every 0<=<1 there is R=>0 such that

exp _&(1+=) \ |x|
+1 +

;

&�W1(x)�exp _&(1&=) \ |x|
+1 +

;

& (3.25)

and

W2(x)�exp _&\ |x|
=+1+

;

& (3.26)

for all |x|>R= . To proof that the convolution W1 V W2 decays at least like
W1 , we pick r>0 such that the intersection of the open disk B(0, r),
centered at the origin with radius r, and the support of W2 contains a non-
empty open set. By using (3.25) we estimate the convolution of W1 and W2

for every |x|>R=+r as follows

(W1 V W2)(x)� inf
|x&z|<r

W1(z) |
| y|�r

d2y W2( y)

�exp _&(1+=) \ |x|+r
+1 +

;

& | | y|�r
d2y W2( y) (3.27)

Therefore the asymptotics of the convolution is bounded from below
according to

lim inf
|x| � �

ln(W1 V W2)(x)
|x|; �&

1+=
+;

1

(3.28)

To derive an upper bound we first choose 0<=<1�2. For |x|>R=�= we
split the convolution integral into two integrals with domains of integration
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inside and outside the disk B(0, = |x| ). With the help of (3.25) we may then
estimate as follows

|
| y|�= |x|

d2y W1(x& y) W2( y)

�|
| y|�= |x|

d2y exp _&(1&=) \ |x& y|
+1 +

;

& W2( y)

�&W2 &1 exp _&(1&=) \ |x| (1&=)
+1 +

;

& (3.29)

where we used Ho� lder's inequality to bound the integral in the last step.
The remaining term is treated similarly. Using (3.26) and Ho� lder's
inequality we estimate

|
| y|>= |x|

d2y W1(x& y) W2( y)�|
| y|>= |x|

d2y W1(x& y) exp _&\ | y|
=+1+

;

&
�&W1&1 exp _&\ |x|

+1+
;

& (3.30)

Clearly, the first term dominates the asymptotics of the sum of the right-
hand sides of (3.29) and (3.30), which yields

lim sup
|x| � �

ln(W1 V W2)(x)
|x|; �&

(1&=);+1

+;
1

(3.31)

Since = can be chosen arbitrarily small, case (i) of Lemma 3.5 is proved. K

Proof of Case (ii) of Lemma 3.5. Assumption (3.23) implies that for
every 0<=<1 there exists R=>0 such that

exp _&(1+=)
|x|2

+2
j &�Wj (x)�exp _&(1&=)

|x|2

+2
j & (3.32)

for all |x|>R= and j=1, 2. For a lower bound on W1 V W2 we use (3.32)
to estimate the convolving factors on 5(x, =) :=R2"(B(0, R=) _ B(x, R=)),
which yields

(W1 V W2)(x)�|
5(x, =)

d2y W1(x& y) W2( y)

�|
5(x, =)

d2y exp {&(1+=) _ |x& y| 2

+2
1

+
| y|2

+2
2 &= (3.33)
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By applying case (i) of the present lemma, the asymptotics of the last
integral is seen to be unchanged if one replaces 5(x, =) by R2, since the
remaining two terms stemming from integration over B(0, R=) and B(x, R=)
decay like Gaussians with variances proportional to +2

1 and +2
2 , respec-

tively. From the explicit formula

|
R 2

d2y exp {&(1\=) _ |x& y|2

+2
1

+
| y| 2

+2
2 &=

=
?

(1\=)
+2

1+2
2

+2
1++2

2

exp _&(1\=)
|x|2

+2
1++2

2& (3.34)

we then conclude

lim inf
|x| � �

ln(W1 V W2)(x)
|x|2 �&

1+=
+2

1++2
2

(3.35)

To obtain an upper bound we split the convolution integral into three
terms by restricting the domain of integration to B(0, R=), B(x, R=) and
5(x, =) which are pairwise disjoint sets for all |x|>2R= . The first two terms
are estimated with the help of (3.32) for all |x|>2R= as follows

|
B(0, R=)

d2y W1(x& y) W2( y)�&W2&1 sup
|x& y|�R=

W1( y)

�&W2&1 exp _&(1&=)
( |x|&R=)

2

+2
1 & (3.36)

|
B(x, R=)

d2y W1(x& y) W2( y)�&W1&1 sup
|x& y|�R=

W2( y)

�&W1&1 exp _&(1&=)
( |x|&R=)

2

+2
2 & (3.37)

The integral over 5(x, =) dominates the sum of the three terms since it may
be bounded using (3.34). Therefore we arrive at

lim sup
|x| � �

ln(W1 V W2)(x)
|x|2 �&

1&=
+2

1++2
2

(3.38)

which completes the proof since = is arbitrary. K
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3.3. Proofs of Theorems 2.3�2.5

Proof of Theorem 2.3. The claimed leading asymptotics of the
integrated density of states is established with the help of the Tauberian
Theorem A.1 and asymptotically coinciding lower and upper bounds on its
shifted Laplace transform N� .

Lower Bound. With the help of (2.8) and inequality (3.5) we find

lim inf
t � �

ln N� (t)
(ln t)2�:�&* lim sup

t � �
(ln t)&2�: |

R2
d2x (1&e&t( |,0 |2 V U )(x)) (3.39)

Since U decays at infinity slower than any Gaussian, Lemma 3.5(i) implies

lim
|x| � �

ln( |,0 |2 V U )(x)
|x| : =&

1
*: (3.40)

which by employing Lemma 3.4 gives

lim
t � �

(ln t)&2�: |
R 2

d2x (1&e&t( |,0 |2 V U )(x))=?*2 (3.41)

Upper Bound. By means of (2.8) inequality (3.4) shows

lim sup
t � �

ln N� (t)
(ln t)2�:�&* lim inf

t � �
(ln t)&2�: |

R 2
d2x (1&e&tU(x))

=&?**2 (3.42)

where we used again Lemma 3.4 in the last step. K

Proof of Theorem 2.4. We construct asymptotically coinciding
lower and upper bounds on the integrated density of states N.

Lower Bound. Employing the inequality (3.5) together with (2.8) we
find

lim inf
t � �

ln N� (t)
ln t

�&* lim sup
t � �

(ln t)&1 |
R 2

d2x (1&e&t( |,0 |2 V U )(x)) (3.43)

Since U decays faster than any Gaussian, Lemma 3.5(i) implies

lim
|x| � �

ln( |,0 |2 V U )(x)
|x| 2 =&

1
2l2 (3.44)
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which by Lemma 3.4 gives

lim
t � �

(ln t)&1 |
R2

d2x (1&e&t( |,0 |2 V U )(x))=2?l2 (3.45)

To extract a lower bound on the leading asymptotics of the integrated
density of states we use the Tauberian theorem (A.1) to obtain

lim inf
Ez0

ln N(=0+E )
|ln E |

=&2?*l2 (3.46)

Upper Bound. It is provided by Corollary 3.3. K

Proof of Theorem 2.5. The claimed bounds on the leading
asymptotics of the integrated density of states follow again by using suit-
able bounds on the shifted Laplace transform and applying the Tauberian
Theorem A.1.

Lower Bound. The inequality (3.5) together with (2.8) and
Lemma 3.4 yields

lim inf
t � �

ln N� (t)
ln t

�&* lim sup
t � �

(ln t)&1 |
R 2

d2x (1&e&t( |,0 |2 V U )(x))

=&?*(*2+2l2) (3.47)

Here we used the fact that U decays like a Gaussian so that

lim
|x| � �

ln( |,0 |2 V U )(x)
|x|2 =&

1
*2+2l2 (3.48)

by Lemma 3.5(ii).
Upper Bound. Since Gaussian decay (2.5) implies assumption (2.2),

Corollary 3.3 provides the claimed upper bound for 2l2�*2. On the other
hand, we may use inequality (3.4) together with Lemma 3.4 to achieve

lim sup
t � �

ln N� (t)
ln t

�&* lim inf
t � �

(ln t)&1 |
R 2

d2x (1&e&tU(x))

=&?**2 K (3.49)
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APPENDIX: A TAUBERIAN THEOREM

Theorem A.1. Let N be a distribution function on the real line R.
Assume there is a constant ' # R such that N(E )=0 for all E�'.
Moreover, define the shifted Laplace transform of N by

N� (t) :=et' |
�

'
dN(E ) e&tE, t>0 (A.1)

and suppose that N� ({)<� for some {>0. Finally, let #�1 and C>0.
Then

lim
t � �

ln N� (t)
(ln t)# =&C (A.2)

if and only if

lim
Ez0

ln N('+E )
|ln E | # =&C (A.3)

Proof. Without loss of generality we may assume '=0. It is enough
to show that Eq. (A.2) or Eq. (A.3) implies that &C is an upper and lower
bound on the lim sup and lim inf of the fraction on the left-hand side of the
respective other equation. This can easily be achieved with the help of the
following two lemmata. K

Lemma A.2. Let N be a distribution function with support in the
positive half-line and N� its (unshifted) Laplace transform. Then for all
E>0

N(E )�e N� \1
E+ (A.4)

Proof. With the help of 3(E$)�exp(tE$) which is valid for all E$ # R
and any t�0 one obtains

N(E )=|
�

0
dN(E$) 3(E&E$)�etE |

�

0
dN(E$) e&tE$=etE N� (t) (A.5)

The choice t=1�E yields the lemma. K
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For a lower bound on the distribution function N we need to evaluate
the Laplace transform at a point slightly away from 1�E, so we define for
any E>0

tE :=
1
E

|ln E | #+1 (A.6)

Lemma A.3. In the situation of Lemma A.2 suppose that either
(A.2) or (A.3) (with ' replaced by zero) holds. Furthermore, if there is a
{>0 such that N� ({)<�, then the inequality

N(E )�N� (tE)&3 e&|ln E |#+1
(A.7)

holds for sufficiently large 1�E.

Proof. By splitting the domain of integration of the Laplace transfor-
mation and employing the fact that 1 is an upper bound on the exponential
of a negative argument we can write

N� (tE)�N(E )+|
�

E
dN(E$) e&tEE$ (A.8)

After re-ordering the terms we are finished if we can show that the remain-
ing integral does not exceed 3 exp(&|ln E | #+1) for large 1�E. Therefore we
note that either (A.3) directly or (A.2) via Lemma A.2 assures that there
exists E0>0 such that

ln N(E )
|ln E | # �&

C
2

(A.9)

for every 0<E�E0 . Now we pick an arbitrary but fixed E1>0 such that

E1<E0 , E1<e&- C#�2 and tE1
�2{ (A.10)

In the following we will assume 0<E<E1 . After these preparations we are
ready to estimate the upper part of the integral in (A.8)

|
�

E1

dN(E$) e&tE$�e&tE1�2 |
�

E1

dN(E$) e&tE$�2

�e&tE1 �2 |
�

0
dN(E$) e&tE$�2�e&tE1 �2 N� (t�2) (A.11)
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Substituting tE for t and using tE�2�{ and the fact that N� is monotone
decreasing (due to monotonicity of N ) one arrives at

|
�

E1

dN(E$) e&tEE$�e&tEE1 �2 N� ({)�e&1�E�e&|ln E |#+1
(A.12)

for 1�E sufficiently large as tE grows faster than 1�E with decreasing E<1.
Next we have to consider the lower part of the integral in (A.8)

|
E1

E
dN(E$) e&tEE$=tE |

E1

E
dE$N(E$) e&tE E$+[N(E$) e&tEE$]E1

E$=E (A.13)

where the equality comes from an integration by parts. The last term can
be bounded according to

[N(E$) e&tEE$]E1
E$=E�N(E1) e&tE E1�e&1�E�e&|ln E |#+1

(A.14)

for sufficiently large 1�E. In the first term on the right-hand side of (A.13)
the integration extends only over E$ smaller than E1 and hence smaller
than E0 . Thus (A.9) can be applied to obtain exp(&tE ftE

(E$)) as an upper
bound on the integrand. Here the function ft is defined by

ft(E$) :=E$+
C
2t

|ln E$| # (A.15)

Note that ftE
is monotone increasing in the closed interval [E, E1] which

can be seen by taking the derivative and using #�1 and |ln E$|&2�
|ln E1 |&2<2�C#, see (A.10). Therefore we arrive at

|
E1

E
dE$N(E$) e&tEE$�(E1&E ) e&tE ftE

(E ) (A.16)

By inserting the definitions of tE and ft one can thus check that the first
term on the right-hand side of (A.13) is also bounded from above by
exp(&|ln E | #+1) for 1�E large enough. K
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NOTE ADDED IN PROOF

In a recent work, (9) which complements the present one, we have
determined rather explicitly the magnetic Lifshits tails for all impurity
potentials U with so-called regular sub-Gaussian long-distance decay. The
resulting formula covers a great variety of classical Lifshits tails and in
particular (1.7) and (2.16) for algebraic and stretched-Gaussian decay.
Roughly speaking, a sub-Gaussian decay is regular if it has no severe
oscillations. Unfortunately, if U # L1(R2) & L2(R2) has sub-Gaussian but
not regular decay, we do not know how to determine the Lifshits tail. In
this case, we cannot even rule out that it exhibits quantum effects.

REFERENCES

1. E. Bre� zin, D. J. Gross, and C. Itzykson, Density of states in the presence of a strong
magnetic field and random impurities, Nucl. Phys. B 235:24�44 (1984).

2. K. Broderix, D. Hundertmark, W. Kirsch, and H. Leschke, The fate of Lifshits tails in
magnetic fields, J. Stat. Phys. 80:1�22 (1995).

3. K. Broderix, D. Hundertmark, and H. Leschke, Continuity properties of Schro� dinger
semigroups with magnetic fields, e-print 1998, math-ph�9808004, to appear in Rev. Math.
Phys.

4. R. Carmona and J. Lacroix, Spectral Theory of Random Schro� dinger Operators
(Birkha� user, Boston, 1990).

5. H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schro� dinger Operators (Springer,
Berlin, 1987).

5a. T. C. Dorlas, N. Macris, and J. V. Pule� , Characterization of the spectrum of the Landau
Hamiltonian with delta impurities, Commun. Math. Phys. 204:367�396 (1999).

6. L. Erdo� s, Lifschitz tail in a magnetic field: The nonclassical regime, Probab. Theory Relat.
Fields 112:321�371 (1998).

7. V. Fock, Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld,
Z. Physik 47:446�448 (1928).

7a. Th. Hupfer, H. Leschke, and S. Warzel, The multiformity of Lifshits tails caused by ran-
dom Landau Hamiltonians with repulsive impurity potentials of different decay at infinity,
e-print 1999, math-ph�9910034, to appear in the Proceedings of the International
Conference on Partial Differential Equations and Mathematical Physics, Birmingham,
Alabama, March 15�19, 1999. Editors: R. Weikard and G. Weinstein, International Press.

8. W. Kirsch, Random Schro� dinger operators: A course, in Schro� dinger Operators,
H. Holden and A. Jensen, eds., Lecture Notes in Physics, Vol. 345 (Springer, Berlin,
1989), pp. 264�370.

9. F. Klopp and L. Pastur, Lifshitz tails for random Scho� dinger operators with negative
singular Poisson potential, Commun. Math. Phys. 206:57�103 (1999).

10. A. Kristoffersen and K. Olaussen, The averaged Green function and density of states for
electrons in a high magnetic field and random potential, J. Phys.: Condens. Matter
9:10801�10827 (1997).

11. L. Landau, Diamagnetismus der Metalle, Z. Physik 64:629�637 (1930).
12. I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered

Systems (Wiley, New York, 1988). Russian original: Nauka, Moscow, 1982.

749Classical and Quantum Lifshits Tailing in Magnetic Fields



12a. H. Matsumoto, On the integrated density of states for the Schro� dinger operators with
certain random electromagnetic potentials, J. Math. Soc. Japan 45:197�214 (1993).

13. D. C. Mattis, The Theory of Magnetism I, corr. 2nd printing (Springer, Berlin, 1988).
14. L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators (Springer,

Berlin, 1992).
15. J. V. Pule� and M. Scrowston, Infinite degeneracy for a Landau Hamiltonian with Poisson

impurities, J. Math. Phys. 38:6304�6314 (1997).
16. M. Scrowston, The spectrum of a magnetic Scho� dinger operator with randomly located

delta impurities, e-print 1999, math-ph�9904031.
17. A.-S. Sznitman, Brownian Motion, Obstacles and Random Media (Springer, Berlin, 1998).
18. N. Ueki, On spectra of random Schro� dinger operators with magnetic fields, Osaka J.

Math. 31:177�187 (1994).

750 Hupfer et al.


